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Motivation

« Beryllium (Be), used as plasma facing and neutron-multiplying material in fusion
reactors is exposed to neutron irradiation and temperature fluctuations.

« During extreme conditions Be can pose risks associated with the release of fusion
fuels and toxic beryllium compound dust formation throughout loss of vacuum
(LOVA) and loss of coolant (LOCA) accidents. [1, 2]

« Thermal analysis methods can be used to evaluate the processes beryllium could
undergo in LOVA/LOCA conditions.
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Experimental

Samples:

1. Be pebbles, neutron-irradiated (E > 0,1 MeV for 294 days, fluence 3-4 - 102> m=2, at a temperature range
from 423 to 823 K) and non-irradiated pebbles of same size (3 ~ 1mm) and grade for comparison, both

produced by Rotating Electrode Process (REP) [1].

Methods:

1. Thermogravimetric/Differential Thermal Analysis (TG/DTA) with SEIKO Exstar 6300; air flow 12 L/h, heating

rate 10K/min, up to 1548K.

2. Scanning electron microscopy with Hitachi S-4800 equipped with EDS system Bruker XFlash Quad 5040
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Fig. 1. Beryllium thermal treatment system
with humidity control
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[1] Pajuste, E., Kizane G., Avotina L., Zarin$ A. Journal of Nuclear Materials, 2015, 465, 293-300.



Results: thermogravimetry

TG/DTA shows an increase of mass which occurs due to the oxidation of beryllium in the
presence of air and water moisture, ultimately leading to beryllium oxide formation. Most notably,
neutron-irradiated pebbles in humid airflow exhibit a mass increase of almost 180%.

temp. temp.
Be(s) + 0,50,(g) — BeO(s) Be;N,(g) + 1,50,(g) — 3BeO(s) + N,(g)
temp. temp.
Be(s) + H,0(g) — BeO(s) + H,(g) 0,5Be;N,(g) + 3H,0(l) — 1,5Be(0OH),(s) + NH3(g)
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3Be(s) + N,(g) — BesN,(s) Be(OH),(s) — BeO(s) + H,0(g)
Fig. 1. Chemical reactions between beryllium and corresponding compounds in air/ humid air [1, 2]
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Results: differential thermal analysis

Beryllium undergoes various thermal processes upon/after commencing rapid oxidation. The
temperature at which such processes take place is dependant on the treatment conditions.
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Fig. 1. Beryllium pebble behavior depending on treatment conditions beryllium pebbles in humid and dry airflow.

It is evident that neutron irradiation can be deemed one of the most important factors impacting thermal
process temperatures for Be. However, humidity also has a key role. Elevated humidity exhibits an augmenting
effect, most significantly impacting the oxidation process.
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Results: microstructure analysis (l)

Beryllium pebbles after thermal treatment have
considerably increased in size and a complex layer
of BeO on the surface is observed.

Furthermore, the complex structures include
systems of cracks ard microcracks of varying depth
and length.

Investigating the Be pebbles using a scanning
electron microscope (SEM) revealed different types
of micro- and nano-sized structures.

Fig. 1. Beryllium pebbles after thermal treatment under SEM:
a) non-irradiated DRY, b) neutron-irradiated DRY,
¢) non-irradiated HUMID, d) neutron-irradiated HUMID

Fig. 2. Non-irradiated beryllium pebble after treatment in humid airflow
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Results: microstructure analysis (Il)

Furthermore, magnifying the treated pebbles
differences in the shape of BeO are observed.

Dry air appears to create -cluster-like oxide
particles, whereas humid air flow produces needle-like
particles, which are substantially smaller and, thus,
fragile.

In case of LOVA/LOCA such micro- and nano-
sized particles are likely to form and pose a hazard as
they can form a toxic BeO aerosol that causes
berylliosis [1, 2].

Some spherical structures are visible on neutron-

Fig. 1. Beryllium pebbles after thermal treatment under irradiated samples, indicating that a de-trapping of gas
SEM at 4,5 - 10% magnification: h likel d. Such struct f babl
a) non-irradiated DRY, b) neutron-irradiated DRY, as likely occurred. suc _S ructures warn ot probable
¢) non-irradiated HUMID, d) neutron-irradiated HUMID trapped gas release during LOVA/LOCA.

[1] Balmes, John R, American Journal of Respiratory and Critical Care Medicine, 2014, 190(10), e34—e59. 7
[2] Shima, S., Sangyo Igaku, 1983, 25(2), 91-105.
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Discussion: safety protocols for LOVA/ LOCA
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Fig. 1. Beryllium chain reactions
with various particles [6]

10Be +y + 6.8 MeV

+ 4He + BHe — 0.64 MeV

Safety protocols regarding issues in nuclear fusion
reactors [1] for extreme events such as LOVA/LOCA
should further include process hazard analysis (PHA)
evaluations on the necessary precautions regarding
fusion fuel and other gaseous substance accumulation
during operation and their subsequent release during
LOVA/LOCA [2].

As beryllium can undergo violent oxidation and
yield airborne beryllium compound particles [3, 4]
together with the de-trapping of fusion fuels/other
gases posing a hazard of an explosion [5], existing
comprehensive safety protocols should be updated
considering the conditions at which Be oxidizes and
subsequently releases gaseous species depending on
the severity of the LOVA/LOCA.
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Conclusions

1. Beryllium oxidation and thermal processes appear to be directly impacted by the thermal
treatment conditions as well as neutron irradiation.

2. Cracking of the Be pebbles and an increase in size is visible after treatment. A micro- and
nanosized layer of BeO has formed with some particles very weakly bonded to the pebble.

3. Results show the substantial cumulative effect of neutron irradiation and elevated relative
humidity during thermal treatment on the thermal processes of beryllium, indicating a lowering of
activation energies necessary for chemical reactions to take place.

4. Elevated humidity together with neutron irradiation yield the most significant mass increase
(~180%) due to BeO formation.

5. The neutron irradiation causes structural defects as well as through nuclear reactions produces
gaseous species within bulk material that ultimately lead to channel formation for the de-
trapping of gas. In a fusion reactor, the gaseous mixture would contain fusion fuel that would
also be released (hence posing a radiation hazard).

6. Results obtained herein this study are to be implemented in nuclear fusion device safety
solution development as well as LOVA/LOCA impact assessment on fusion fuel release.
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